Introducción Además de ser estudiadas por vocación o por educación, las matemáticas constituyen como una herramienta cada vez más indispensable para cierto número de ramas importantes del saber. Parte de esa herramienta son los procesos algebraicos, el álgebra proporciona los medios para expresar de manera concisa las relaciones entre números en sí desconocidos, así como los medios para manipular tales números. Estos aspectos de la utilidad del álgebra se harán tanto más evidentes según el estudiante avance en sus cursos profesionales. El álgebra es la idea central desarrollada por ser el primer encuentro real de los alumnos con las matemáticas, en el cual debe de tratarse de forma que resulte comprensible e interesante. El objetivo fundamental de este blog, es la resolución de problemas de funciones y ecuaciones mediante métodos algebraicos y la interpretación gráfica de ciertas ecuaciones. Elaboró: Rojas Calderón Jesús Saúl
Entradas
Mostrando entradas de abril, 2018
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Marco teórico Una ecuación de segundo grado o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. Una ecuación cuadrática es una ecuación de la forma ax ² + bx + c = 0 donde a, b, y, c son números reales y a es un número diferente de cero. Ejemplos: x ² - 9 = 0; x ² - x - 12 = 0; 2x ² - 3x - 4 = 0. Existen varios métodos para resolver las ecuaciones cuadráticas. El método apropiado para resolver una ecuación cuadrática depende del tipo de ecuación cuadrática que se va a resolver. Otra de las características de las ecuaciones de segundo grado es que tienen dos soluciones, que pueden ser número reales o imaginarios. También pueden ser incompletas y completas. Factorización: Para utilizar este mét...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Funciones de segundo grado Una función cuadrática es una función que puede ser descrita por una ecuación de la forma siguiente: f(x) = a x 2 + bx + c Las letras a, b y c se llaman coeficientes de la función; la letra x representa la variable independiente y la expresión f(x) representa el valor obtenido al reemplazar x por algún valor en el lado derecho de la igualdad, es decir, f(x) es la imagen de x. La expresión f(x) puede reemplazarse por la letra y que representa a la variable dependiente de la función. La forma algebraica de una función cuadrática tiene las siguientes características: • Siempre hay un término que contiene la variable elevada al cuadrado. La mayoría de las veces esta variable se designa por la letra x, pero también se pueden usar otras. • La expresión del lado derecho es un polinomio que tiene por lo general 3 términos, pero también puede tener nada más que uno sólo; o solo 2. A veces una función cuadrática no está dada en su forma general,...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Ecuación de segundo grado Se le llama ecuación de segundo grado a una ecuación del tipo “ax 2 +bx+c=0”, en la cual “a”, “b” y “c” son constantes arbitrarias y “a≠0”. Las ecuaciones de segundo grado en las que aparecen la primera y la segunda potencia de la incógnita se llaman ecuaciones completas de segundo grado, mientras que las que sólo contienen la segunda potencia de la incógnita se llaman ecuaciones simples de segundo grado. Las ecuaciones en la que la máxima potencia de la incógnita es la tercera o la cuarta potencia, se llaman ecuaciones de tercer grado o ecuaciones cúbicas y ecuaciones de cuarto grado o ecuaciones cuarticas, respectivamente. Por ejemplo, “2x 2 -3x+2=0” es una ecuación completa de segundo grado, mientras que “3x 2 -27=0” es una ecuación simple de segundo grado. Solución de ecuaciones de segundo grado por factorización El empleo de la factorización para resolver ecuaciones de segundo grado depende del principio siguiente: El producto de dos o más f...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Relación de función y ecuación de segundo grado Primero que nada debemos recordar que una función cuadrática puede ser descrita por una ecuación de la forma siguiente: f(x) = a x 2 + bx + c Las letras a, b y c se llaman coeficientes de la función; la letra x representa la variable independiente y la expresión f(x) representa el valor obtenido al reemplazar x por algún valor en el lado derecho de la igualdad, es decir, f(x) es la imagen de x. La expresión f(x) puede reemplazarse por la letra y que representa a la variable dependiente de la función. Mientras que una ecuación cuadrática es una ecuación del tipo “ax 2 +bx+c=0”, en la cual “a”, “b” y “c” son constantes arbitrarias y “a≠0”. Las ecuaciones de segundo grado en las que aparecen la primera y la segunda potencia de la incógnita se llaman ecuaciones completas de segundo grado, mientras que las que sólo contienen la segunda potencia de la incógnita se llaman ecuaciones simples de segundo grado. Las ecuac...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Aplicación de la función Las funciones cuadráticas se usan en muchos tipos de situaciones del mundo real. Son útiles para describir la trayectoria de una bala, para determinar la altura de un objeto lanzado y para optimizar problemas de negocios. Cuando resuelves un problema usando una función cuadrática puede ser necesario encontrar el vértice o describir una sección de la parábola. Usando la parábola Una aplicación muy común y fácil de entender de una función cuadrática es la trayectoria seguida por objetos lanzados hacia arriba y con cierto ángulo. En estos casos, la parábola representa el camino de la pelota (o roca, o flecha, o lo que se haya lanzado). Si graficamos la distancia en el eje x y la altura en el eje y , la distancia que del lanzamiento será el valor de x cuando y es cero. Este valor es una de las raíces de una ecuación cuadrática, o intersecciones en x, de la parábola. Sabemos cómo encontrar las raíces de una ecuación cua...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Aplicación de la ecuación El estudio de la ecuación cuadrática en el contexto de la física sirve como una plataforma para establecer conexiones de los conceptos fundamentales de la ecuación cuadrática. De esta manera se asocian aspectos de la ecuación cuadrática con el tema de caída libre de los cuerpos, mostrando como se puede transitar de un contexto a otro con la finalidad de lograr la comprensión de los conceptos matemáticos También el uso de ecuaciones se utiliza en la cinética química: La ecuación cuadrática también nos puede servir para calcular la ecuación utilizada para calcular diversos factores en una parábola: (1) Ecuación paramétrica horizontal del tiro parabólico x = v c o s ( α ) t x = v c o s ( α ) t Despejar el tiempo t de la ecuación (1) t = x v c o s ( α ) (2) Ecuación paramétrica vertical del tiro parabólico y = v s e n ( α ) t − 1 2 g t 2 + H y = v s e n ( α ) t − 1 2 g t 2 + H Sustituir t ...
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Conclusiones A lo largo de esta actividad hemos aprendido, qué son las ecuaciones de segundo grado y como se resuelven. Esto de manera general puede beneficiar a los alumnos al adquirir algunas competencias matemáticas como la de resolver problemas de manera autónoma, lo cual implica que los alumnos sepan identificar, planear y resolver diferentes tipos de problemas o situaciones, utilizando más de un procedimiento, reconociendo cuál o cuáles son los más eficaces, con base al contexto al que se le presente. De igual modo, validar procedimientos y resultados, justificar procedimientos y soluciones encontradas, mediante argumentos. Haciendo uso de las aplicaciones mostradas anteriormente, ya que, estas les servirán como una gran herramienta de estudio. A través del estudio de las funciones matemáticas, podemos decir que son muy importantes tanto para las matemáticas como para muchas otras ciencias e incluso para la vida diaria. El objetivo planteado e...